The Magnetic Recoil Spectrometer (MRS) for diagnosing pR in cryogenic
DT implosions and for basic science experiments at OMEGA and the NIF

LLE Review _

Quarterly Report o=

Daniel Casey

18th High Temperature Plasma
Diagnostics Conference
Wildwood, NJ

May 16— 20", 2010

PSIC

MIT Plasma Science & Fusion Center

s
2
@
£
3
o




Collaborators

J. A. Frenje, F. H. Séguin, C. K. Li, and R. D. Petrasso
Plasma Science and Fusion Center, Massachusetts Institute of Technology

P. B. Radha, V. Yu. Glebov, T. C. Sangster, D. Meyerhofer, and M. Burke
Laboratory for Laser Energetics, University of Rochester

R. Bionta, S. P. Hatchett, S. Haan, A. Mackinnon, D. P. McNabb, P. Navratil,
S. Quaglioni, and R. Rygg

Lawrence Livermore National Laboratory

K. Fletcher

Department of Physics and Astronomy, SUNY Geneseo

R. J. Leeper

Sandia National Laboratories

PSIC v I [CEN oo

MIT Plasma Science & Fusion Center




Summary

>

The MRS is being used to measure the ICF-neutron

spectrum and to do basic science experiments at OMEGA

The MRS at OMEGA is the only diagnostic that routinely diagnoses
high-pR (> 180 mg/cm?) cryogenic DT implosions.

Measurements of the astrophysical S-factor (or cross-section) for
the T(t,2n)*He reaction (TT-reaction) have been conducted for the
first time using an ICF facility at energies inaccessible by
conventional accelerator-based techniques.

An MRS, which is currently being installed on the NIF, will play a
critical role in guiding the National Ignition Campaign towards the
demonstration of thermonuclear ignition and net energy gain.
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Motivation

1. To provide information about pR, T;, T, and Y,

that will be integral for assessing failure modes
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Motivation | 5 - To perform basic science experiments by studying
the SHe(®*He,2p)*He and 3H(*H,2n)*He reactions

1. Measure the characteristics of the
3H(®H,2n)*He reaction (an important mirror
reaction to the 3He(®He,2p)*He reaction that
is relevant to the stellar nucleosynthesis).

2. Measure 3He(*He,2p)*He reaction at the NIF
(this can be done by turning the MRS into a
charged-particle spectrometer that can
simultaneously measure the spectra of
protons and “He ions).

R.N. Boyd, L. Bernstein and C. Brune, Physics Today 62, August (2009).



Using an ICF facility, the 3He(®He,2p)*He and T(t,2n)*He reactions can be

studied at energies inaccessible by conventional accelerator techniques
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ICF implosions produces weakly coupled plasmas

in which electron screening has no impact on the cross section
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The principle of the Magnetic Recoil Spectrometer (MRS)
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J.A. Frenje et al., Phys. Plasmas 16, 042704 (2009).



MRS detection efficiency and energy resolution

« The detection efficiency (gyrs) IS defined as:

N do

Q
emrs =, Nt | aQ
A dQ
lab Absolute yields are measured

since 2, n, t, 499 and Q2 are known
' dQ

* Resolution (AE)) is defined as:

AE . .[AE’ + AE’ + AFE’

AE; = Energy loss in foil o foil thickness
AEy = Kinematic energy broadening o foil and aperture sizes

AE,, = Optical energy broadening o« magnet performance 11



1/MeV

10

10

107+

10

The Monte Carlo code Geant4 is being used to model
the full MRS detector response
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The MRS uses CR-39 detectors to detect recoill
protons and deuterons

CR-39
45 proton tracks (~5 x 6 cm?)

(5-10 um in diameter)

~200pum| "+ .

Y

~ 300 pm

« CR-39 detects the charged recoil particles with a 100% efficiency.
« CR-39 detects neutrons (bkgd) with an efficiency of 5x10-.



The Coincidence Counting technique (CCT) reduces
the CR-39 background for the MRS by orders of magnitude
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The MRS on OMEGA was installed and fully
commissioned in spring 2008

~2000 Ibs of CH, shielding
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The MRS on the NIF is being installed as we speak

PSI(

MIT Plasma Science & Fusion Center

MRS Location
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Areal density (pR) is inferred from
knock-on deuterons (KO-d) and down-scattered neutrons (DS-n)

DT or surrogate plastic shell
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The MRS regularly diagnoses pR in cryogenic DT implosions at
OMEGA including a recent implosion with pR =295 + 66 mg/cm?
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Currently no other pR diagnostic operates (>180mg/cm?)

T. C. Sangster, - Phys. Plasmas 17, 056312 (2010).
J. A. Frenje, Phys. Plasmas 17, 056311 (2010). 20



DS-n and KO-d measurements are in good agreement for
symmetric implosions below the KO-d detection limit (<180mg/cm?)
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J. A. Frenje, Phys. Plasmas 17, 056311 (2010). 21
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Current theory predicts that the 2-body reaction channel accounts
for <5% of the total TT-neutron emission (2-body + 3-body)
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_ —DT DS-n
3 body reaction CH DS-n

T+ T—> a+ n+n(0-9.5MeV) TT 2 body peak

2 body reaction
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C. Wong et al., Nucl. Phys. 71(1965)106, E_,, = 250 keV -> T(t,n)°He/total-n ~ 9%.
K.Allen et al., Phys. Rev. 82(1951)262,  E,. = 110 keV -> T(t,n)*Heltotal-n ~ 5%, 23
V. Glebov et al., Bull. Am. Phys.So0c.(2008) E;~ 20 keV -> T(t,n)°He/total-n ~ 0%.



The TT S-factor can be measured directly from the ratio of the
TT and DT yields at the Gamow energy
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We can probe Gamow energies of ~8-40 keV at OMEGA

24

*1D hydro simulations show approximately equal DT and TT burn profiles



The TT neutron spectrum was measured at a T, of 5 keV and analysis
indicates the 2-body yield accounts for 1 + 2 % of the total neutron emission
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This process was repeated for several sets of implosions and the 2-body
reaction accounts for ~4% of the total TT neutrons at 16-30 keV
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The determined S-factors in the range 16-30 keV are higher
than evaluated extrapolations but experimental errors are large
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Could there be a near threshold resonance in the

TT reaction, as there is one for DT and D3He?
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OMEGA data and simulations indicate that the MRS will
accurately diagnose THD and DT implosions at the NIF
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Summary

>

The MRS is being used to measure the ICF-neutron

spectrum and to do basic science experiments at OMEGA

The MRS at OMEGA is the only diagnostic that routinely diagnoses
high-pR (> 180 mg/cm?) cryogenic DT implosions.

Measurements of the astrophysical S-factor (or cross-section) for
the T(t,2n)*He reaction (TT-reaction) have been conducted for the
first time using an ICF facility at energies inaccessible by
conventional accelerator-based techniques.

An MRS, which is currently being installed on the NIF, will play a
critical role in guiding the National Ignition Campaign towards the
demonstration of thermonuclear ignition and net energy gain.
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